2008 Tulane Engineering Forum

Advanced Composite Manufacturing for the Orion Program

Jay Layton

Lockheed Martin Space Systems - Michoud Operations

Contents

- Why composite materials?
- What are composites?
 - History
 - Materials
 - Advanced Composites Manufacturing
- Fiber Placement Technology
- Orion Composites
- Questions?

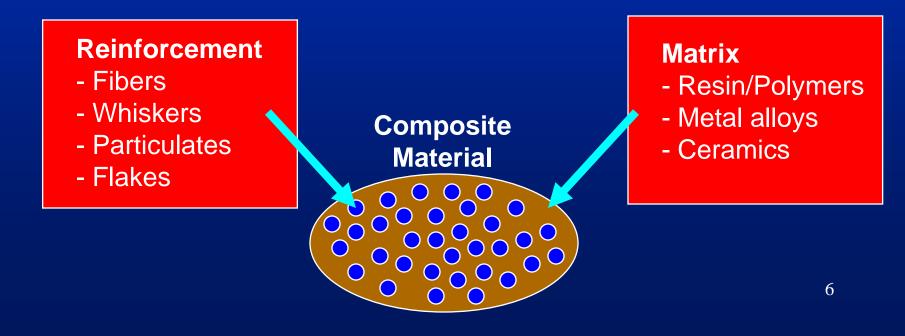
Why Composites?

<u>Advantages</u>

- Reduced structure weight this is by far the biggest driver
 - Graphite/epoxy density is 40 percent less than aluminum
 - Actual weight savings depends on the application and number of joints but usually varies between 15% and 30%
- Reduced part count
 - Lower assembly costs
- Tailoring of material thickness is easy
- High corrosion resistance and fatigue capability

Why Composites? Advantages

- Special advantages in special situations, e.g...
 - The use of low thermal conductivity glass/epoxy
 - The use of low thermal expansion material in satellites
 - The use of very high modulus material to minimize deflections
 - The use of low dielectric materials in radomes
- Tailoring of material properties is possible
- Wide variety of materials and forms to suit specific needs



Why Composites? Disadvantages

- Larger scatter in material properties
- Sensitivity to manufacturing processes
- Complex analysis required
- Material cost
- Lack of material databases
- Sensitivity to moisture and elevated temperature
- Repairability

What are Composites ?

- Composites are non-homogenous, reinforced, matrix bound materials that usually exhibit some desirable structural characteristics such as high strength, great stiffness, or low density.
- The reinforcing filaments may be boron, graphite, glass, etc., and the binding matrix is usually an epoxy, polyester, or polyamide resin, but may be a metal, ceramic, or glass.

History of Fibrous Composites

- Wood
- 800 B.C Straw and Mud Bricks (Adobe)
- 700 B.C Laminated Bow with Animal Tendons, wood, silk
- 1910 Doped Fabric and Wood A/C Structure
- 1935 Owens-Corning Fiberglass Corp.
- 1940 Plywood A/C Structure
- 1943 FRP Aircraft Structure
- 1947 First Commercial Epoxy
- 1953 Corvette FRP Production Body
- 1958 First Carbon from Rayon
- 1959 Texaco announces Boron
- 1961 First Graphite from Pan
- 1964 Carbon Fibers from Pan
- 1965 Boron Fibers Available
- 1969 F-4 Boron-Epoxy Rudder
- 1970 F-14 Boron/Epoxy Horizontal
- 1973 Kevlar 49
- 1985 Spectra

Current Applications of Composites

Space Shuttle - Payload Bay Doors - Nose Cap - Leading Edges

- Leading Edges Aircraft Radomes

Satellite Structures

Pressure Vessels

Antennas Hip Implants

Aircraft Wings

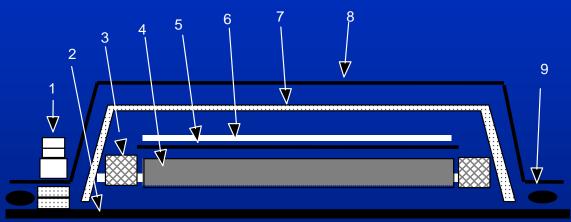
Golf Club Shafts Tennis Racquets

Fishing Rods

Auto Bumpers Boat Hulls Ladder Rails Pipes Skis Drink Bottles Bridge Structural Components

Performance

Advanced Composites Manufacturing


- Focus on thermoset polymer matrix composites
- Focus on advanced composite structures
 - Resin matrix (epoxy, phenolic, bismaleimide, polyimide)
 - Reinforced with continuous fibers (carbon, glass, aramid, quartz)
 - Multiple plies with varying orientations
 - Used on highly loaded structures
 - High fiber to resin ratio (55-65% fiber by volume)
 - Low void content (<2% by volume)
 - Use temperature of 120°C or higher

Example Bagging Sequence for Cure

Vacuum bagging:

- Forms and consolidates the laminate

– Allows outgassing in the laminate during cure

- 1. Vacuum port*
- 2. Tool*
- 3. Edge dam
- 4. Laminate*

* needed for debulks

- 5. Peel ply
- 6. Release film*
- 7. Breather*
- 8. Nylon vacuum bag*
- 9. Sealant tape*

Manufacturing Methods

Manual methods

– Hand layup

- Resin infusion methods

- Resin transfer molding (RTM)

– Vacuum assisted resin transfer molding (VARTM)

– Resin film infusion (RFI)

- Automated methods
 - Filament winding
 - Automated tape laying
 - Advanced fiber placement

Hand Layup

- Process Description
 - Hand place reinforcement onto tool
 - Vacuum bag layup
 - Oven or autoclave cure
- 2 Basic Methods
 - Prepreg lay up unitape and fabric
 - Wet lay up
 - Lay down dry fabric, pour or brush resin into the fabric
 - Pre-wet dry fabric then lay up on mold

Hand Layup

- Consolidation Methods
 - Intermediate debulks during layup
 - External pressure (vacuum bag or autoclave) during cure

• Tooling

- Composite, Invar, aluminum, steel
- Must be able to withstand cure temperatures and pressures

Hand Layup

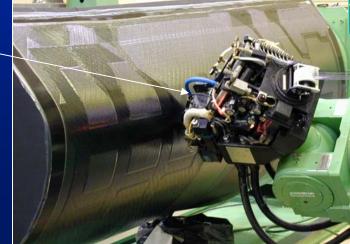
- Application Considerations
 - Material compatibility unlimited combination of fiber and resin
 - Part geometry complex parts, small to moderate size
 - Equipment requirements oven or autoclave
 - Material scrap high
 - Labor cost high
 - Material lay down rates low
 - Repeatability low
 - Improved with automated ply cutters and laser ply projection systems
 - Good process for small part size, small number of units, and parts with complex shapes

Hand Lay Disadvantages

Fabricating prepreg laminate structures* can be accomplished many ways:

- Hand operations
 - Typically limited to fabric
 - Used extensively in prototype and small to medium size parts
 - Several advantages
 - No capital investment in equipment
 - Simpler less expensive setup and operation
 - Can do complex contoured surfaces
 - Several disadvantages
 - Limited through put/productivity
 - Quality issues
 - Limited accuracy/repeatability
 - Human error
 - High material scrap factors
 - Materials remaining after pattern nesting and cutting

* This does not consider dry fiber fabrication processes such as filament winding and resin infusion


- Process Description
 - Automated machine places multiple unitape prepreg tows on mandrel
 - Placement up to 32 tows, tows are usually 1/8" wide
 - Tows can be added, dropped, and added again at any time during the lay down process
 - Vacuum bag layup to the tool
 - Oven or autoclave cure
- Consolidation Methods
 - Compaction by appplying pressure and heat at roller in placement head
 - Intermediate debulks during layup
 - External pressure (vacuum bag or autoclave) during cure

rotating mandrel

multi-axis fiber_ placement head

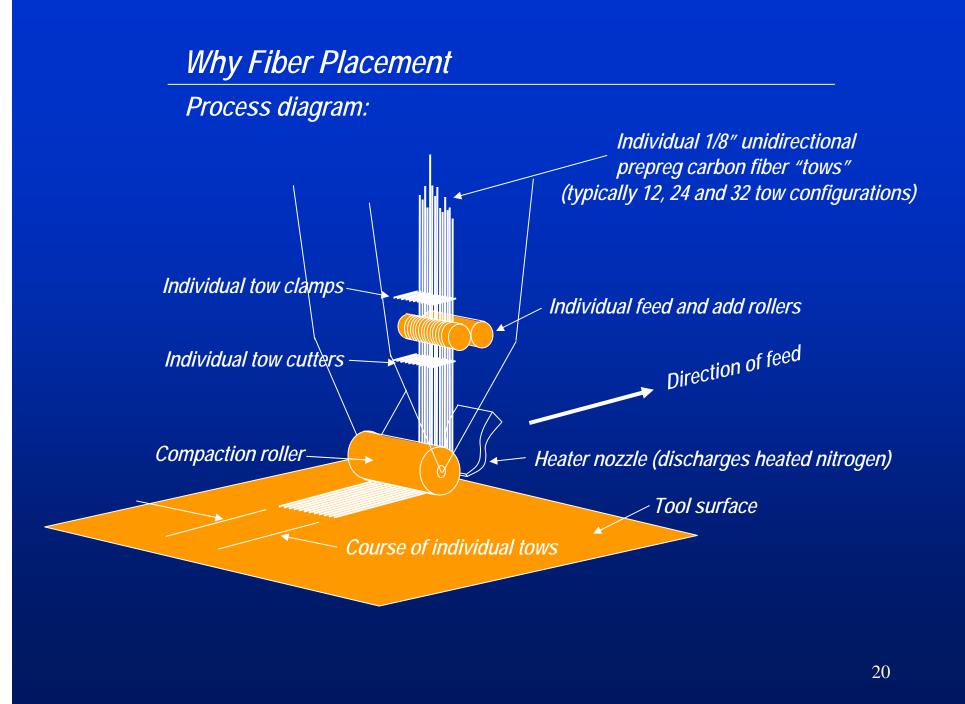
• Tooling

- Composite, Invar, aluminum, steel
- Must withstand head pressure, cure temperatures, and cure pressures

• Application Considerations

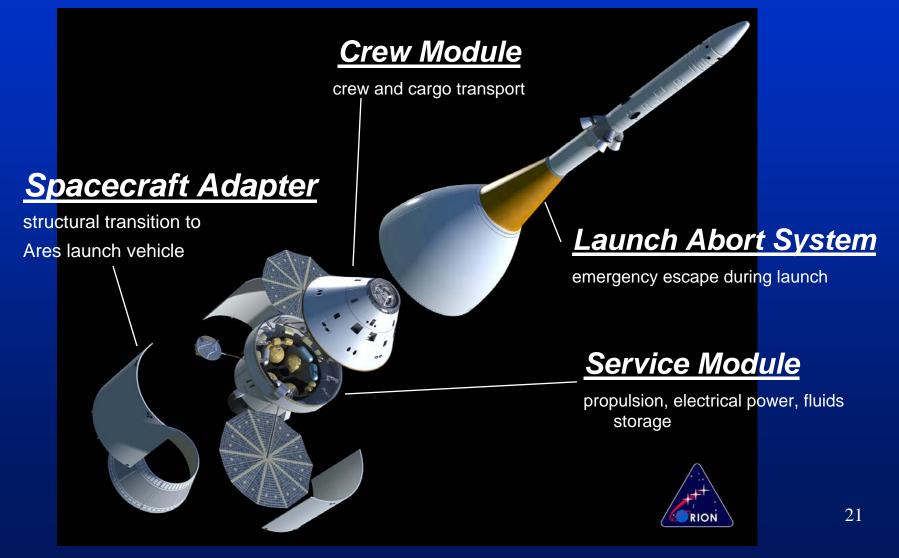
- Material compatibility unitape only
- Part geometry moderate to large parts with complex contours
- Equipment requirements fiber placement machine, autoclave
- Material scrap -low
- Labor cost low
- Material lay down rates high
- Repeatability high
- Good process for large parts with complex surfaces

Fabricating prepreg laminate structures* can be accomplished many ways:


- Automated operations

•Fiber placement

- Process originated from tape laying
- Places multiple "tows" of narrow unidirectional prepreg tape on a tool surface typically in quasi-isotropic ply build ups (0°. +/- 45° and 90° fiber orientations)
- Several advantages
 - High productivity (high lbs./hr. lay down rates)
 - High accuracy/repeatability
 - Can lay on relatively complex curved tool surfaces
 - Cutting and adding tape has a very low scrap factor
 - Narrow 1/8" tows create very fine saw tooth


pattern for near net shape ply boundaries

- Disadvantage
 - Capital investment

Orion Composites

- Fiber Placement chosen as primary composite manufacturing process on Orion
 - Composites consist of greater than 30% of primary structure (~130 parts/vehicle)

