# Stay Cable Replacement for the Luling Bridge

Armin Mehrabi
Bridge Engineering Solutions, PC
AMehrabi@BESbridge.com

10th Annual Tulane Engineering Forum April 16, 2010, New Orleans, LA





## **Stay Cables**



#### Deck and Cross Girder







#### Statement of Problem

- Rusting and water leakage in anchorages
- Cracking/splitting of cable cover pipes
- Signs of compromise in cables safety
- In 2002, LADOTD initiated a project for Structural Evaluation of the Stay Cables

#### Three Phases of Investigation

- Phase I: Assessing extent of problems and the overall integrity check
- Phase II: Hands-on inspection of the suspect locations and critical elements
- Phase III: Detailed design of repairs





#### Source of Problem















# Inspection findings Damage Severity Levels

| Severity Level | Status       | Description                                                                                                                                                                                                                       |
|----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Satisfactory | Minor deterioration and anomalies noted                                                                                                                                                                                           |
| 2              | Poor         | Deterioration of the protective elements and potential for degradation. Cables with this level of damages need to be routinely monitored and corrective action needs to be planned.                                               |
| 3              | Critical     | Deterioration or potential for deterioration of<br>the main tension elements (steel wires)<br>exists. Action (repair) is necessary. Cables<br>with this level of damages shall be closely<br>monitored until repairs are applied. |

#### Severity Level 3, Damage Examples









#### Summary

- 40 out of 72 cables are rated critical
- All cables have at least damage Level 2
- Damage causes still present
- Increasing rate of deterioration is evident
- Timely corrective action was needed

# Decision Making Life Cycle Cost Analysis

- Define planning horizon
- Define repair strategies
- Estimate costs for strategies
- Calculate present values
- Select preferred strategy

#### Repair/Replacement Strategies

- ■Base Case
- Repair all
- Repair-Replace 1
- Repair-Replace 2
- Replace all

#### Cost Structure

- Initial Costs
- Distributed Annual Costs
- Periodic Repair Costs
- Vulnerability Costs

#### Each cost element includes:

- Agency Costs
- Users' Costs

#### Comparison among Cost of Various Strategies



#### Comparison among Cost of Various Strategies



#### Phase III

Cable Replacement Design

#### Cable Replacement Design Team

Client: Louisiana Department of Transportation and Development (LADOTD), Paul Fossier, Project Manager

Project Manager: Armin Mehrabi, Bridge Engineering Solutions

Prime Consultant: CTLGroup

Cable replacement design: International Bridge Technologies, Inc.

Deck repair design: TranSystems

MOT, Survey & Plans: ABMB Engineers, Inc.

#### Cable Replacement Design

#### **Objectives:**

- Develop a cost effective design that requires minimal engineering by contractors.
- Minimize impact on traffic.
- Analyze for live load, wind force, and construction load effects.

#### Replacement Cable Design

Cable systems considered

Parallel strand system



**Parallel wire system** 



### Replacement cable design

- Parallel strand, preferred system
- Availability in the US
- Used in most new bridge constructions
- Ease of inspection and replacement
- Corrosion protection system
- Strand-by-strand installation



No major failures documented in bridges using this system

### Replacement cable design

#### Parallel strand, preferred system

- Larger anchorages
  - Require modifications of existing structure
  - Increase wind load
  - Change aerodynamic characteristics
- New Cables; 24,45,57,68 strand
- Additional 24 reference strand

### Maintenance of Traffic



PEAK TRAFFIC OPERATION



NON-PEAK TRAFFIC OPERATION

### Temporary cable design

Need for Temporary cables

- Uncertainty in cable condition
- Large cable group spacing
- Need to maintain traffic w/o load limits

## Temporary cable design





## **Temporary Cables**













### Modeling and Structural Analysis



### Finite Element Analysis

- Analyze each stage of construction
- Generate member action envelopes for all load combinations
- Provide geometry control variables
- Determine stressing sequences
- Analyze Live load, wind load and construction load effects

## Design for Peripherals

Cable vibration suppression measures



### Cable Vibration Suppression Measures



### Summary

- Inspection performed 2004-2006
- Cable replacement design 2007-8
- Construction project bid Feb. 25, 2009
- Construction began Fall 2009

