Stay Cable Replacement for the Luling Bridge Armin Mehrabi Bridge Engineering Solutions, PC AMehrabi@BESbridge.com 10th Annual Tulane Engineering Forum April 16, 2010, New Orleans, LA ## **Stay Cables** #### Deck and Cross Girder #### Statement of Problem - Rusting and water leakage in anchorages - Cracking/splitting of cable cover pipes - Signs of compromise in cables safety - In 2002, LADOTD initiated a project for Structural Evaluation of the Stay Cables #### Three Phases of Investigation - Phase I: Assessing extent of problems and the overall integrity check - Phase II: Hands-on inspection of the suspect locations and critical elements - Phase III: Detailed design of repairs #### Source of Problem # Inspection findings Damage Severity Levels | Severity Level | Status | Description | |----------------|--------------|---| | 1 | Satisfactory | Minor deterioration and anomalies noted | | 2 | Poor | Deterioration of the protective elements and potential for degradation. Cables with this level of damages need to be routinely monitored and corrective action needs to be planned. | | 3 | Critical | Deterioration or potential for deterioration of
the main tension elements (steel wires)
exists. Action (repair) is necessary. Cables
with this level of damages shall be closely
monitored until repairs are applied. | #### Severity Level 3, Damage Examples #### Summary - 40 out of 72 cables are rated critical - All cables have at least damage Level 2 - Damage causes still present - Increasing rate of deterioration is evident - Timely corrective action was needed # Decision Making Life Cycle Cost Analysis - Define planning horizon - Define repair strategies - Estimate costs for strategies - Calculate present values - Select preferred strategy #### Repair/Replacement Strategies - ■Base Case - Repair all - Repair-Replace 1 - Repair-Replace 2 - Replace all #### Cost Structure - Initial Costs - Distributed Annual Costs - Periodic Repair Costs - Vulnerability Costs #### Each cost element includes: - Agency Costs - Users' Costs #### Comparison among Cost of Various Strategies #### Comparison among Cost of Various Strategies #### Phase III Cable Replacement Design #### Cable Replacement Design Team Client: Louisiana Department of Transportation and Development (LADOTD), Paul Fossier, Project Manager Project Manager: Armin Mehrabi, Bridge Engineering Solutions Prime Consultant: CTLGroup Cable replacement design: International Bridge Technologies, Inc. Deck repair design: TranSystems MOT, Survey & Plans: ABMB Engineers, Inc. #### Cable Replacement Design #### **Objectives:** - Develop a cost effective design that requires minimal engineering by contractors. - Minimize impact on traffic. - Analyze for live load, wind force, and construction load effects. #### Replacement Cable Design Cable systems considered Parallel strand system **Parallel wire system** ### Replacement cable design - Parallel strand, preferred system - Availability in the US - Used in most new bridge constructions - Ease of inspection and replacement - Corrosion protection system - Strand-by-strand installation No major failures documented in bridges using this system ### Replacement cable design #### Parallel strand, preferred system - Larger anchorages - Require modifications of existing structure - Increase wind load - Change aerodynamic characteristics - New Cables; 24,45,57,68 strand - Additional 24 reference strand ### Maintenance of Traffic PEAK TRAFFIC OPERATION NON-PEAK TRAFFIC OPERATION ### Temporary cable design Need for Temporary cables - Uncertainty in cable condition - Large cable group spacing - Need to maintain traffic w/o load limits ## Temporary cable design ## **Temporary Cables** ### Modeling and Structural Analysis ### Finite Element Analysis - Analyze each stage of construction - Generate member action envelopes for all load combinations - Provide geometry control variables - Determine stressing sequences - Analyze Live load, wind load and construction load effects ## Design for Peripherals Cable vibration suppression measures ### Cable Vibration Suppression Measures ### Summary - Inspection performed 2004-2006 - Cable replacement design 2007-8 - Construction project bid Feb. 25, 2009 - Construction began Fall 2009