# Westinghouse Electric Co. Global Nuclear Outlook

#### Michael G. Anness,

Manager, Advanced Reactors Westinghouse Electric Co.

#### **2010 Tulane Engineering Forum**

Session B - Fueling Our Energy Future in a Carbon Constrained World, Part 1

April 16th, 2010



### Westinghouse is a Global Company



### Reactor Technology Portfolio

**AP1700** (1700+ MWe)



**AP1000** (1117 MWe)

Large, Passive



New, Advanced **LWRs** 

Integral Modular (~300 MWe)



**Small Modular Reactors** 



**High-Temperature Gas Reactors** 

4S, ARR, others (10-1200 MWe)



**Fast Spectrum Reactors** 



### The Westinghouse AP1000<sup>™</sup>





### **Passive Core Cooling System**

- AP1000 safety does not rely on AC power
  - Passive decay heat removal
  - Passive safety injection
  - Passive containment cooling
- Long term safe shutdown state:
  - 72 hours without operator action





AP1000<sup>TM:</sup> 10 Worldwide EPC Contracts

• Progress in AP1000<sup>™</sup> construction

Modular construction







# The Call for Small Modular Reactors: Clean, Reliable Energy Options

Clean, safe, reliable electricity

Distributed electricity needs

- Utilities with little nuclear operation experience
  - Slow demand growth
    - Limited infrastructure
      - Easier equity ownership



Baseload generation

- State mandated RPS requirements
  - Resource constraints, e.g., land, cooling water
  - Financing limitations
  - Replacement for aging fossil-fueled plants
- Grid limitations



## Integral, Small Modular Reactors

- Advanced, Integral PWR
- Helical-coil steam generators
- Axial flow fully immersed primary coolant pumps
- Internal control rod drive mechanisms
- Integral pressurizer with large volume-to-power ratio
- Elimination of all major piping in primary system
- Large reactor vessel water inventory
- Large safety margins





### PBMR-CG HTR for Co-Generation

- He-cooled HTR
- >700 °C outlet temperature
- 200 MWt, ≤ 80 MWe
  - MWe output varies with co-generation
- TRISO fuel in "pebble" form
  - Online refueling
- Co-generation applications have gained strong interest from prospective clients (e.g., SASOL, Oil Sands, NGNP, Eskom)
  - Applicable to broad range of process steam applications
- Selected by U.S. DOE as Next Generation Nuclear Plant Phase I candidate
  - \$40M cost-shared award currently under negotiation with DOE



**Investors include:** South Africa Government, Eskom, Industrial Development Corporation and Westinghouse Electric Company



Fuel

## PBMR-CG Revised Product Offers Decreased Complexity





### PBMR-CG Product Range



**Steam Methane Reforming** 



CTL process developments





**SAGD/EOR Steam Supply** 

## Water splitting with DOE HyS funded development





## Westinghouse/Toshiba Advanced Recycle Reactor

Na-cooled fast reactor with passive safety systems

Designed to trasmutate spent nuclear fuel

Developed under GNEP program

Pool-type configuration

Double-walled steam generators
eliminate need for intermediate HX loop

- 1000 MWt/410 MWe
- 510 °C outlet temperature
- Conversion Ratio < 1.0 (flexible CR built-in)





