

Making Renewable Energy Work: Future R&D Needs

Bryan Hannegan, Ph.D. Vice President, Environment & Renewables

Tulane Engineering Forum April 16, 2010

Our History ...

- Founded in 1973
- Independent, nonprofit center for public interest energy and environmental research
- 450+ collaborative participants in more than 40 countries
 - EPRI members generate more than 90% of U.S electricity
- Major offices in Palo Alto, CA;
 Charlotte, NC; Knoxville, TN
 - Laboratories in Knoxville,
 Charlotte and Lenox, MA

EPRI's Founder Chauncey Starr

Our Value ...

EPRI's Research Portfolio

Generation

Fossil Operations & Maintenance

Environmental Controls

Generation Planning
Advanced Coal

Combustion Turbines

Renewables

Nuclear Power

Equipment Reliability

Nuclear Operations & Asset Management

High Performance Fuel

Nondestructive Evaluation

High Performance Workforce

Risk/Safety Mgt

Environment

Air Quality

Global Climate Change

Land & Groundwater

Water & Ecosystems

Electromagnetic Fields (EMF)

Occupational Health & Safety

Transmission

Substations

Grid Reliability

Power Markets

Distribution

IntelliGrid

Energy Utilization

Prism / MERGE Analysis...

Roadmap for a low-carbon future...

- Detailed analysis of the pathway to reducing CO₂ emissions across the electricity sector
- Provides guidance on the needed generation mix to slow, start and reverse global CO₂ emissions
- Cited in numerous national and international publications

2010 Update In Progress

EPRI PRISM—Potential for CO₂ Reductions

*Energy Information Administration (EIA) Annual Energy Outlook (AEO)

EPRI MERGE – Two Possible Future Mixes

Renewable Energy R&D Needs

- Reduce Cost of Generation Technology Options
- Integrate Variable Generation with Transmission and Distribution
- Optimize Energy Storage Capability
- Understand and Minimize Environmental Impacts

Cuts Across Traditional Business Lines

Renewables: The Generation Challenge

Economics & Technology Status

- Renewable Energy Technology Guide
 - Status and potential of renewable technologies
 - Industry trends
- Engineering and Economic Evaluations
- Analysis and Strategy
 - Role of renewables in future generation portfolios
 - Policy scenarios

Biomass

- Biomass Supply Management
 - Long-term supply security
 - Development of multiple supply chains
 - Assessment of energy plantations
- Power Generation from Biomass
 - Impact on environmental equipment
 - Biomass plant cost database
 - Ash utilization
 - Torrefied wood full-scale tests
 - Methods to increase co-firing fraction
- Life Cycle Analysis of Biomass-Based Power
 - Updated biomass-to-power carbon footprint
 - Land, water implications of biomass supply
 - Broad deployment of biomass power plants: environmental implications

Solar

- Solar Augmented Steam Cycle Applications Analysis
 - Analyze new applications
 - Greenfield
 - Integration with biomass or geothermal
- Solar Technology Acceleration Center (SolarTAC)
 - Benchmark PV/CPV technologies
 - SolarTAC demo projects
- Solar Thermal Storage Technology Assessment
 - Field data for installations
 - Identify hosts for collaborative evaluations of thermal storage performance

Wind

- Wind Power Technology Assessment
 - Drive train, generators, blades, towers, sensors and controls
 - Engineering and economic assessment
- Wind Power Asset Management
 - Status of O&M and asset management technologies
 - Condition Monitoring and NDE
 - O&M procedures
 - Wind turbine asset management guidebook

Geothermal

- Geothermal Operations and Maintenance
 - Plant evaluations and assessments
 - O&M handbook
 - Training and technology transfer
- Assessment of Geothermal Power Technologies
 - Engineering and economic analysis of low- and moderatetemperature geothermal resources and technologies
 - Identify demonstration projects for advanced geothermal or EGS

Waterpower

Conventional hydro, ocean, and hydrokinetics

- Waterpower resource assessment
- Generation Issues
 - Technology development
 - Optimization & maintenance
 - Revenue opportunities
- Environmental Issues
 - Advanced turbine development
 - Greenhouse gas research
 - Fish passage & protection
- Ocean & Hydrokinetic Energy Research (Supplemental)

Renewables: The Integration Challenge

Integration of Large Scale Renewables

Transmission Development

 New Transmission Planning Tools and Methods to Integrate High Variable Resources

Resource Adequacy

 New Methods to Determine Supply Capacity and Reserve Requirements

Advance Operator Tools

- New Methods to Determine Supply Capacity and Reserve Requirements
- New Operator Decision-Making Tools and Improved Frequency Control Methods

Flexible System Resources

- Technical Performance Specs for VG/DR/PHEV
- Smart Grid Demonstration Projects

Integration of Distributed Renewables

High Penetration PV Impact on Circuits

- Model development and system impact evaluation
- Economic Assessment
- Demonstration on selected feeders

Distribution PV Monitoring

- Understand the performance characteristics under various environmental and climatic conditions
- Large population of units
- Monitoring protocol and package

Operations and Maintenance Needs

- Assess maintenance practice
- Develop needs, gap analysis
- Identify opportunities for improvement

18

Energy Storage

Technology Watch and Strategic Intelligence

Market Analysis

Strategic Intelligence

On-line Assessment Guide

Evaluation Tools

Technology Assessment & Evaluation

Fuel Cells and Flow Batteries

Compressed Air Cycles

Li-ion Batteries

Thermal Storage Systems

Micro-generation

Testing, Validation and Demonstration

NaS Battery

ZnBr Battery

Large CAES

Li-ion Battery

Mobile Storage Systems

Short-Term

Long-Term

Renewables: The Environmental Challenge

 Understanding the interaction between the environment and renewable energy technologies

- Characterizing the resource
- Interactions with species and habitat
- Life cycle analysis
- Human health and safety
- Advancing improved approaches
 - Siting methodologies
 - Technology and operational improvements
 - Mitigation strategies
- Large scale impacts and limitations
 - Assess the impacts on harvesting energy at large scales

Working Collaboratively: Solar PV Example

3 Year Strategy

Compile solid data on O&M, Validate and demonstrate value, Determine realistic cost, & Inform key stakeholders

U.S. DOE

EIA

National Labs

State Demonstrations

EPRI

Renewables ELT

PDU Sector Council

Distributed Solar ELT

Program Advisory (P174)

Demonstrations

Coordination with DOE/Labs/

Industry

SEIA

Solar Industry

SEPA

SEIA

SolarTAC

PV/Inverter Manufacturers

Regulatory and Informational

FERC

NERC

NARUC

Standards Organizations

Key Insights from Recent EPRI Work

- The technical potential exists for the U.S. electricity sector to significantly reduce its CO₂ emissions over the next several decades.
- A low-cost, low-carbon portfolio of electricity technologies can significantly reduce the costs of climate policy.
- No one technology will be a silver bullet a portfolio of technologies will be needed.
- Renewables must overcome barriers related to cost and performance, integration, and environmental sustainability
- Much of the needed technology isn't available yet substantial R&D, demonstration is required.

For More Information

Bryan Hannegan

Vice President, Environment and Renewables

Electric Power Research Institute

3420 Hillview Avenue

Palo Alto, CA 94034

(650) 855-2459 (phone)

(650) 387-7985 (mobile)

bhannegan@epri.com

Together...Shaping the Future of Electricity

