
Using Six Sigma "Lean" for Process Improvements

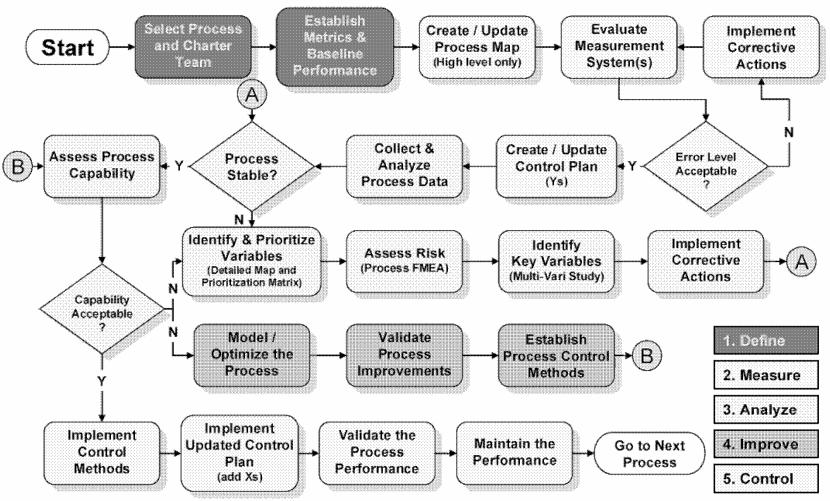
Daniel Charles

What is Six Sigma?

- Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects and minimizing variability in processes.
- Data Driven Problem Solving
 - Simple and generic, but rigorous approach.
 - Problem focused.
 - Data driven at every phase.
 - Graphical techniques

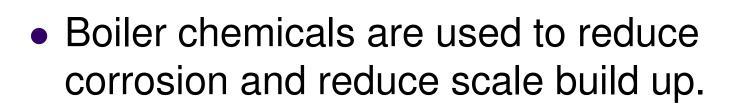
What Makes A Six Sigma Project?

- Clearly connected to business priorities.
- Major importance to the organization.
- Reasonable scope. Completion in 4-6 months.
- Measureable quantity for success.
- Supported and approved by management.


DMAIC Process

- <u>Define</u> the problem and the project goals.
- <u>Measure</u> key aspects of the current process and collect relevant data.
- <u>Analyze</u> the data to investigate and verify cause-and-effect relationships.
- <u>Improve</u> the current process based upon data analysis to create a revised process.
- <u>Control</u> the revised process to prevent defects.

The Six Sigma Process


© 2007 by Business Process Improvements, LLC. All rights reserved.

Leaning the Six Sigma Process

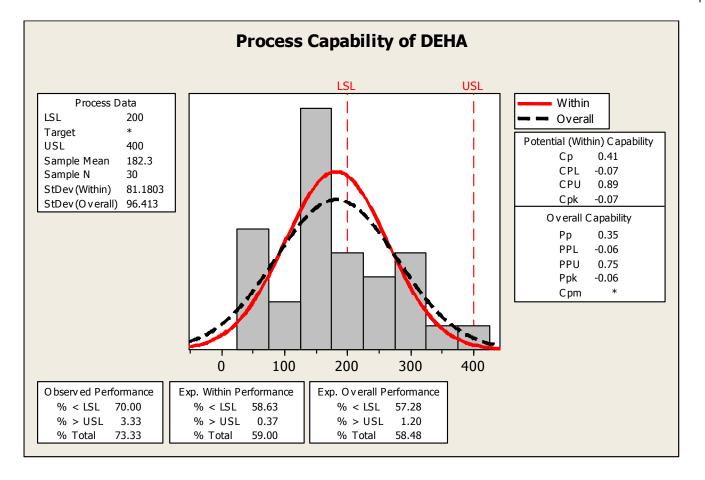
- Shorten the timeframe for small project completion
- In consideration of one's knowledge of the project, evaluate the six sigma project as a whole and delete non-essential steps.

The Project

- Reduce boiler chemical cost by \$50,000 or by 40% annually.
- Current chemical usage: 22 liters per day.

Define

Used Tools


- Define the problem
- Baseline Performance
 Draft project charter
- Gain management approval

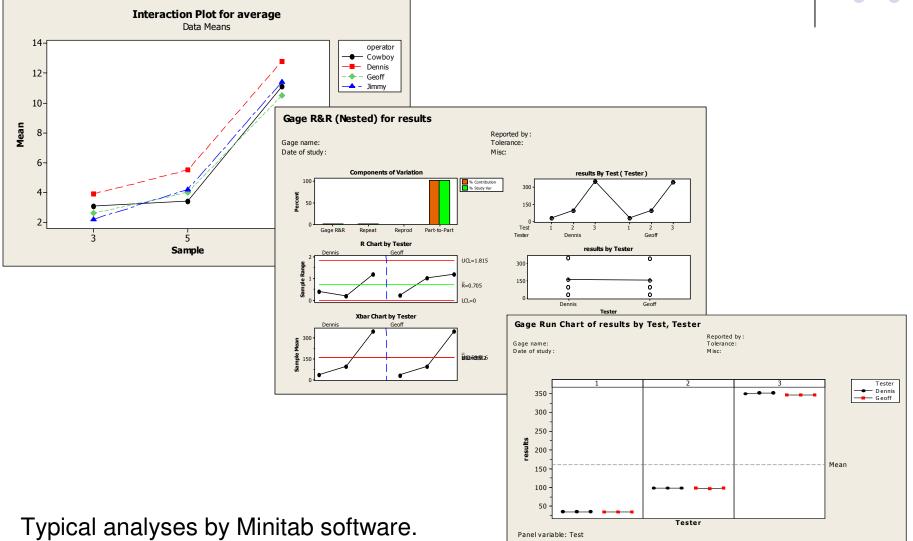
- Select Team

Process Capability

Goal is to fit the bell curve in between the LSL and USL limits.

Measure

Used Tools


- Evaluate measurement system
- Collect process data
- Baseline capability
- Repeatability & reproducibility

- Create process map
- Measure process spread
- Short and long term variation
- Cause and effects
 matrix

Analyze

Analyze

Used Tools

- Analyze process data
- Multi-variable study
- 5 why's
- Negative brainstorming
- Create control plan

- FMEA
 - Regression
 - Normality testing
 - DOE

Failure Mode Effect Analysis

Process Step	Key Process Input	Potential Failure Mode	Potential Failure Effects	SEV	Potential Causes	OC C	Current Controls	DE T	RPN
Sampling	Operator	Doesn't wait long enough	Bad sample	9	Boiler valve	7	None	9	567
Sampling	operator	Waits too long to run sample	Bad analysis	7	Gets busy	8	Operator check	9	504
Testing	Operator	Wrong reagent	Wrong/zero value	9	Procedure	8	none	7	504
Chemical prep	Operator	Too much added	Chemical waste	7	Procedure	7	None	7	343
Testing	operator	Buret used improperly	High hardness	9	In hurry	7	None	6	378

Example of a step eliminated due to overcomplexity.

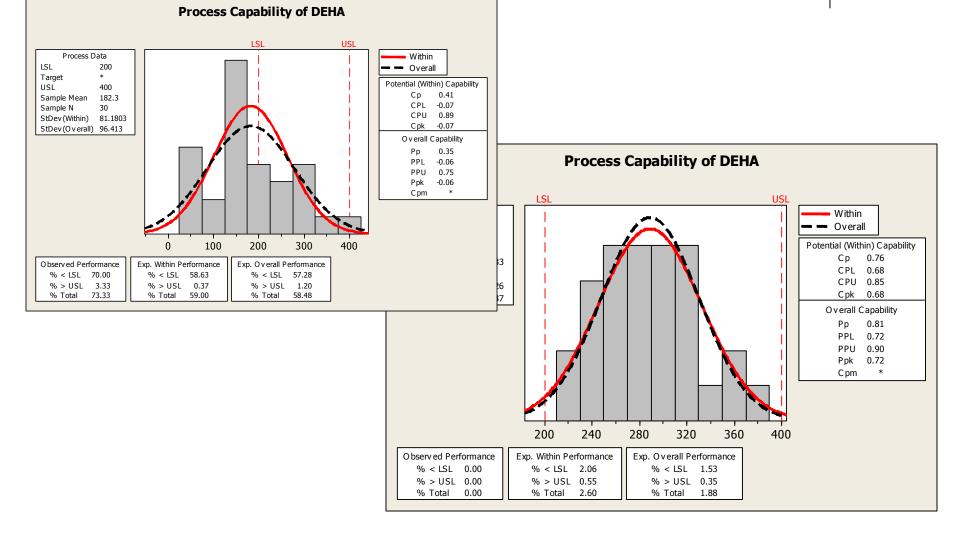
Improve

Used Tools

- Generate potential solutions
- Management of Change
- Validate process improvements

- Model the process
- Use comparisons
- Prioritizations

Control


Used Tools

- Validate performance
 I-MR chart
- "Embed" the solutions X bar chart
- Quantify the improvement
- Close the project

Control Plan

Results

- Maintained AMSE standards while reducing chemical consumption from 22 to 10.4 liters daily.
- Savings of \$43,000.
- Reduced project time from 6 months full time to 2.5 months part time.

The Leaning Process

- Cleary identify the scope and magnitude of the project.
- Based on your level of knowledge of the project, determine which six sigma steps are unnecessary.
- Eliminate unnecessary six sigma steps on a project to project basis.
- If in doubt, complete the step.
- Target the reduction from 4-6 to 2-3 months.

Questions?

• References:

- <u>Six Sigma and Minitab.</u> Quentin Brook. QSB Consulting, 2006.
- <u>Six Sigma Green Belt 1.</u> Peter Peterka. Six Sigma.us, 2008.

