Energy & Urban Metabolism

Z Smith

Eskew+Dumez+Ripple

ARCHITECTURE ENVIRONMENTS URBAN DESIGN

Themes

- High-performing standalone buildings: a start
- Buildings aren't static objects
 - Occupants matter: feedback & control
 - Buildings can participate in urban ecosystems during
 - Construction
 - Operation
 - Deconstruction
- One building's "waste" is another's "food"

Vancouver

B U S B Y
P E R K I N S
+ W I L L

CIRS

- A living laboratory to accelerate sustainability
- A healthy place to work
- Net zero energy
- Carbon negative operation
- Low Carbon construction
- Net zero water use
- Net gain in landscaped area
- Non toxic materials
- Cost no more than typical university construction

Deconstructing existing building on site; Function replaced in basement of new building

Massing

Daylighting

- Narrow office bars
- Orient them
 E-W for easiest glare control

Wood Structure

- Try not to place office spaces over assembly spaces
- Make the most of the site
 - preserve path
 - engage SustainabilityStreet landscape

BUILDING MASSING IMPLICATIONS

Narrow floor plates

- Everyone has access to light and views
- Easy natural ventilation

Public space / green space

View from Courtyard / Auditorium Roof

Structure: Wood

- Glulam moment frame
- Solid wood floor slabs
- Shear in perimeter walls

Why wood?

- The building material made by the sun
- The building material that sequesters carbon
- There's a lot of it in BC—a lot of it dead, thanks to the pine beetle
- Low embodied energy

High Performance Building Envelope

Reflecting Seasonal Change

Energy strategy: A net-zero intervention

Condensate Heat

Energy Strategy: A Carbon-Negative Intervention

As a result of building CIRS, the university...

- gets a new 60,000 SF building
- their campus CO2 emissions will drop 70 tons per year
- their campus energy consumption will drop 110MWh/yr

Carbon Neutral Construction

Energy strategy: A net-zero intervention

- Energy—net zero
 - CIRS uses 306 MWh/yr electricity, including EOS intervention
 - CIRS exports 311 MWh/yr heat to EOS, reducing natural gas use
- CO₂ -net negative
 - UBC will emit 50 tonnes/yr less
 CO₂ after building CIRS than before
 - The construction of CIRS has associated emissions of ~1000 tonnes CO₂
 - The wood used in building CIRS sequesters ~500 tonnes CO₂ eq.

CIRS Alternative	CIRS Energy Use kWh/m²/year	Energy Sent to EOS kWh/m²/year
Lab Exhaust HR	67	68
GSHP	70	0
ASHRAE Reference	201	0

LCA CO2 per m3 of material, including carbon sink effect of wood Building Information Foundation RTS (Finland)

Achieving better energy performance

Energy use vs. decade of construction, Source: J. Straube, quoting DOE

Lewis Center, Oberlin College 2000

- O Goal: energy neutral
- * Energy use w/ PV
- * Energy use without PV array

source; J. Scofield, Oberlin

The gap between prediction & performance

- Buildings predicted to use less energy tend to, but...
 - Variation in design accounts for only
 1/3 of the variation in actual energy use
 - What is responsible for the other 2/3?

Figure 21: Measured versus Design EUIs (kBtu/sf)

Source: New Buildings Institute study of 100 LEED certified buildings

2004 Electric Bills for 11 Beazer Homes in Sacramento, CA (from SMUD)

People matter

50 schools built around the same time, with similar designs & budgets
Source: Toronto and Region Conservation Authority

Complexity matters

- Building form: Deep floor plates require more complex systems
- Complex systems can be harder for organizations to maintain & operate
- Building and systems need to be legible to users

Feedback matters

UBA Dessau

- Predicted use: 55 kWh/m²/yr
- Actual use: 75 kWh/m²/yr
 (typical office building: 300 kWh/m²/yr)

CIRS

- Sensors everywhere
- Building learns from inhabitants, inhabitants learn from the building

Neighbourhood amenity & energy centres for EcoDensity

A schools-centred opportunity for locating amenities

EcoDensity / Eco-Intensity

- Not just putting more buildings on a piece of land...
- Getting more use out of a piece of land and existing buildings
- Providing live, work and recreation opportunities that enhance civic life

Proposal

Co-locate community amenities and district energy with re-developed schools

 Walking distance for everyone

1920 New York Plan: Clarence Perry

Why are schools so ideally located as the civic buildings you can walk to?

- School construction boom in the 1920s
- Schools were considered the centre of neighbourhood life
- Schools placed at the centre of a ¼ mile (400m) to ½ mile (800m) walkable zone

What Seattle is doing

Upgrading its neighbourhood schools into neighbourhood amenity centres

- School by day
- Gym: for the kids by day, the neighbourhood by night
- The library has a community reading room
- Day care / afterschool care is built in
- Typical project seismically upgrades a 35,000 SF heritage school, replaces gym to be post-disaster facility, and adds of amenities to a total 55,000 SF

Latona Elementary

Schoolyards: an energy resource

Neighbourhood amenity & district energy centres for Vancouver

- Schools by day
- Neighbourhood amenities
 - Preschool / child care
 - Afterschool care
 - Neighbourhood gym
 - Reading rooms
 - Neighbourhood plazas
 - · farmers markets
 - summer outdoor concerts
- District Energy Anchors
 - Ground source heat exchange fields under the playing fields
 - CO₂-free heating & cooling shared with (sold to!) nearby dense commercial & residential

Pilot program announced

NEIGHBOURHOODS OF LEARNING

Premier Gordon Campbell announced a \$30-million Neighbourhoods of Learning pilot project, which will see education and community services brought together in a single neighbourhood hub. Three school districts will be participating in the pilot project.

PREMIER GORDON CAMPBELL'S VIDEO GALLERY

- News Release
- Photos

Water Management in Cities Today

Once-through; waste is a problem

Source: Patrick Lucey, Aqua-Tex

Tomorrow's Integrated Resource Management

Waste becomes fuel

Linköping, Sweden & Lille, France

Source: Patrick Lucey, Aqua-Tex

Dockside Green

Victoria, British Columbia

Dockside Green: Water

Dockside Green: Energy

 Fuel In-Feed Locally sourced wood waste (including recycled clean wood construction and municipal tree trimmings) is loaded into the fuel bin and

2. Gasifier
Fuel enters the gasifier
and goes through several
stages including drying,
Pyrolysis (chemical
change brought about by
heat), and gasification.
The wood is converted
into synthetic "syngas"
that can be used like
natural gas.

3. Oxidizer
The syngas is
conveyed into the
oxidizer where it is
combusted, with the
resulting flue gas
directed through a
boiler.

4. Boiler
Hot water from the
boiler is transported
by an underground
pipe to provide heat
and hot water for
Dockside buildings.
The cold water then
returns to the boiler
to start the heating
process

5. ESP
After exiting the boiler, the flue gas is cleaned in an electrostatic precipitator (ESP) that filters out virtually all of the remaining particulate matter.

Council House 2

Melbourne, Australia

The sewer-mining system is one of CH2's more innovative sustainable strategies. Raw sewage is brought into the building directly from an adjacent sewage line (above left). From there, physical matter is filtered out and "flushed" back into the sewer system (above right). The water is then cleaned by a multistep process involving what amounts to a mini-sewage-treatment plant (bottom right). The cleaned, nonpotable water is then used throughout CH2 for flushing toilets, irrigating plants, and for make-up water in the mechanical system. Australian plumbing code, like its American counterpart, requires nonpotable water to be in lavender pipes (bottom left). Photos © Russell Fortmeyer

Olympic Village

Vancouver, British Columbia

FALSE CREEK ENERGY CENTRE TO IONA SEWAGE TREATMENT PLANT HOT WATER DISTRIBUTION PIPES

New Orleans

Vision: Instead of 'bursts' of water secreted

underground,
spread it, slow it
down, make it an
urban amenity
where possible.

Opportunity:

What if it also acted as a distributed heat sink for heating & cooling our buildings?