# GEOPRESSURE PRESSURE PREDICTION FOR ULTRADEEP WELLS: WHEN THE RESERVOIR BECOMES THE ENEMY

Alan R. Huffman
Fusion Petroleum Technologies Inc.



#### **Casing Program Design In A Nutshell**



#### **BURIAL MODEL FOR SAND BODIES**



Figure from Stump et al. (2002)

#### PRESSURE REGIME IN SAND BODIES



Figure from Stump et al. (2002)

#### HYDROLOGIC MODEL FOR SAND BODIES

#### Steady-Flow Model



#### MODELS FOR LOADING OF SANDS



Figure from Stump et al. (2002)

#### PRESSURE PROFILE FOR DIFFERENT STRUCTURES



Figure from Stump et al. (2002)

#### **Centroids For Three Different Fluids**



The Centroid is the mass balance point for influx and outflow of fluid in the sand

#### **Lateral Transfer Through Sands**





#### Centroid Calculation of Sand Pressure at The Well



"b": brine sand pressure

"o": oil sand pressure

"g": gas sand pressure

**PSI** 

#### **South Louisiana Case History**



#### **Pressure Data From Calibration Wells**



#### **Effective Stress Calibration With Multiple Mechanisms**



#### **Interval Velocity For Arbitrary Line C-C'**



#### Pore Pressure Gradient For Arbitrary Line C-C'



#### Fracture Pressure Gradient For Arbitrary Line C-C'



#### **Pore Pressure Gradient (ppg)**



#### Migration Due To Seal Failure



**Courtesy of Penn State University** 

#### Migration Due To Seal Failure

Pressure ---->





**Courtesy of Penn State University** 

## Implications for Secondary Migration and Trap Potential



**Pressure** 

#### **Pore Pressure Gradient (ppg)**



The primary trap has a blown seal, but the lower-relief side of the reservoir still can hold a column

#### Pore Pressure Gradient For Arbitrary Line C-C'



#### Predicted Pore Fluid and Fracture Pressures in Casing Program Design



## Predicted Pore Fluid and Fracture Pressures in Casing Program Design (Shales Only)



## Predicted Pore Fluid and Fracture Pressures in Casing Program Design (Sands Included)



## Predicted Pore Fluid and Fracture Pressures in Casing Program Design (Minimum Plan)



### Predicted Pore Fluid and Fracture Pressures in Casing Program Design (Conservative Plan)



#### **Closing Thoughts**

- Reservoirs exist in pressure balance with their surroundings, so a robust prediction of shale pressures is the first step in accurate prediction of reservoir pressures
- Large reservoirs, when structured, can become conduits for lateral transfer of fluids in the subsurface that can create or destroy a prospect
- There is a direct relationship between the drilling window and the structural height of reservoir that can hold a seal
- Robust prediction of reservoir pressures requires accurate maps of the entire reservoir and full integration with DHI analysis and depositional systems analysis to determine reservoir connectivity
- Shallow reservoirs can become major drilling hazards if they are connected to deep highly-pressured rocks that have blown seals
- The selection of what depth to penetrate a reservoir MUST take into account the basic physics of reservoir behavior or the results can be very unpleasant

