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Gulf of Mexico

o Home to = 24% of natural gas and =18% of
petroleum oil (processing and production).

o Extensively developed region with high drilling
activities.

o Home to a rich ecosystem with = 28% of total volume
of US fisheries and rich habitat for rare species.

o Mississippi river drains a third of the US into the Gulf
of Mexico.
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Deepwater Horizon Accident

Natural seeps always exist in T AL
GoM. LouisiaNa | MISS. | }
April 20, 2010 major rig Fr - j‘*--;,"":_‘“fl"ﬂ X
explosion 50 miles off the coast. New Dr‘IE.arf . site of
~1500 m below sea surface, Ay p L% ollrig
high pressure (160 atm) and low N, e Vo e ‘E““m“ﬂ"“
temperature (4°C).

Reservoir at 4000 m depth. ﬂi‘:;::

4.7-5.5 million barrels released

at 53,000-62,000 bbl per day.

Qil dispersant added at =1% by e

volume. e

THE TIMES-PICAYUNE
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The “Big” Questions

 How much do the science/engineering
community know about a massive O&G
release process?

» Where does all the material go?

« What is its impact on the Gulf biota?

o Should have hypothetical spill scenario analysis
studying short and long-term effects, remediation and
cleanup strategies.
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Oil Chemical Fate and Impact Issues

* The initiating event — spill process, phases
identification, composition (hours to days)

« Short term fate — spreading process, impacts
and clean up (days to months)

* Long term fate — oll residuals, life-time
persistence, chronic impacts (months to
decades).
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Sea Floor Leak and Oil Fate Processes

Marine aerosols evaporation
L] I
™ " LN
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-

Wave action - Surface

Thermocline dissolution e

preventer
Sediment burial

< 5000 ft

Salinity
Temperature

Qil reservoir
18000 ft
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The Initiating Event

€ Blowout and oil phases < What mass fraction remains
formed — oil, liquid, solid soluble in sea water?

(waxy?), and gas phase. $ What mass fraction is
€ Dispersions, dispersants? released to air?

€ Multi-component mixture
with range of chemical
properties (transport and
reaction) that operate on
short time scales.

€ Need answers to “where
does it go?”

What fraction falls back to
the seafloor?

What fraction is
biodegraded?

What is the composition of
the “surface slick™?

What is the composition of
the “mousse or tar-ball’?
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Oil/Gas Flow Rate Estimates
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Likely Fate of Oil and Gas from DWH?

Directly
Other HE??:;?'“
D00, -

Burned
oo

Skimmed
3%
Chemically
Evaporated or Dispersed
Dissolved 162
24%
Maturally
Dispersed
13%

Source: Reproduced by CRS using estimates provided the Federal Interagency Solutions Group, Oil Budget
Calculator Science and Engineering Team. Oil Budget Calculator: Deepwater Horizon-Technical Documentation,
Movember 2010.
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Oil Fate Processes

wind :
Bubble
Bursting/ 0

White caps :
[ X ]
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dissolution
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Oil return to sea floor WE" b'owouf
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Oil Fate in Water

<~ Substantial plume f\: '%
35kmlengthand ‘- 2 Ee—
1100 km depth for R T T
months without R
biodegradation. o

<Monoaromatic input T Tt T
5500 kg/day e

<-Microbial respiration - =

C,, drocarbons (miz S7:17) benzans (miz TE1TIx 107 naphthalens (méz 12817} = 107

rat e < 1 “ M 02 p e r Fig. 1. Vertical profile of water-column chemistry, ~4 km from the well site at 28.7352*N 88.3892°W.

Aromatic hydrocarbon values are expressed on a relative (logarithmic) scale using in situ ultraviolet
flourometry, whereas hydrocarbon measurements determined via mass spectrometry are ratioed to water

{m/iz 17) to correct for variability in instrumental response. Mass spectrometer concentration values are
n unitless (expressed on a relative scale).
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Oil Fate in Water - Microbial Activation

Cell Density [log cells/ml]
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Oil Fate in the Atmosphere
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Oil Fate in the Atmosphere

» Narrow plume of HC
downwind attributed
to evaporation of
fresh oil = 2 x 10°
kg/day.

» A wider plume
attributed to SOA
from less volatile M TR NP _
HC=8 x 104 kg/day. "5 m &= 4 o

uTc
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Dispersant Use in DWH Incident

<> Dispersant addition:
<-Sufficient dosage of application to form droplets

< Early application before light components
evaporate

<-Lower oil-water interfacial tension to allow droplets
formation and facilitate biodegradation.

<> Commonly used commercialized as Corexit class.

<> Little known about efficacy at high P and low T
conditions — sub-surface application.

<> How do gas hydrates effect dispersant addition?
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Dispersant Fate

A DOSS concentrations at plume depf May June 2010 <~ Deepwater Horizon oil spill

included the injection of

o [1771,000 gallons (2,900,000 L)

50w . M%‘ . < DOSS was sequestered in

"l L hydrocarbon plumes at 1000-
1200 m water depth and did not

mow o " intermingle with surface

e dispersant applications.

I Py < Persisted up to 300 km from the

.(;*ZIM well, 64 days after dispersant
applications ceased.

O @ < Underwent negligible, or slow,
7N %o rates of biodegradation in the
affected waters.

30
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Oil/Detergent in/on Near-shore Environments

o Do oil droplets with dispersants
adsorb to sediments or continue
to “roll” on sediments and reach
shallow waters, beaches and
marshlands?

o Shallow water, higher
temperature conditions release
lighter fractions and form “tar
balls”?

o Natural weathering,
biostimulation, bioaugmentation,
and physical removal of near-
shore areas?
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OIL/GAS BUDGET-UNKNOWNS AND KNOWNS

Hydrocarbon mass fractions produced from deepwater, shallow and surface O/G spills.

*1. The soluble mass from gas moving from blow-out point to sea surface.

«2. Hydrates (gas) formed and fall back onto sea bed (melt then go in solution also?)

3. Gas bubbling through the sea surface entering the atmosphere.

4. *Soluble mass moving from oil-phase material in rising droplet plume.

*5. *Neutral-buoyancy droplet residue mass produced following solubilization of light-
ends, it remains suspended to drift about at depth.

*6. *Negatively-buoyant droplet residue mass produced following solubilization which
settles on the sea bed surface

7. *Oil mass rendered negatively-buoyant from contact with suspended particulates. It
settles onto the sea bed.

8. *Soluble mass moving from floating oil surface slicks and/or near- surface mousse.

*9. *Neutral and negative-buoyant droplet residual produced following light-end
solubilization and evaporation from surface slicks.

*10. Vaporized oil-phase material entering the atmosphere from surface slicks and near
surface mousse.

*11.  Floating oil-residue material of positive to near-neutral buoyancy (the slick).

«12. *Oil-phase aerosols ejected into the atmosphere by bursting bubbles and breaking
waves.

*Denotes those processes influenced by dispersants.
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Conventional Wisdom

« OIL FLOATS WHEN SPILLED ON WATER!!!!

« WHEN IT DOES SINK, ATTACHMENT TO

HEAVIER-THAN-WATER PARTICLES IS THE
REASON!!!!

— Organic debris (marine snow).

Copepod fecal matter.

Sediment and other particles from the River
Drilling mud solids.

Burned oil products.

Near shore sand carried off by high tidal currents.

4/18/2011
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Reservoir and Fluid Composition
Reservoir Composition

Methane 77.8% atm. Vapor PENTANE
Ethane 7.6% atm. Vapor HEXANE
TOLUENE
Liquids BENZENE
C30+ 16.6% (wt) SG=1.007 eSS
C50+ 7.1 %(wt) SG=1.15 FRESH WATER
SEA WATER
Sea Water SG=1.025
Oil API gravity 35.[SG=0.849] ASPHALTENES
NAPHTHALENE
PHENANTHRENE

BENZO-a- PYRENE

Chemical Composition

0.63
0.66
0.87
0.88
~0.87

1.00
1.025

1.1t0 1.2
1.15
1.18
1.37
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Droplet Transport in the Sea

Solubilization/Sinking Evaporation/Sinking

Lighter-than-water oil droplet rises in the
water column...soluble chemical fraction
disolves...droplet decreases in
size...reverses direction at density greater
than water...falls downward...both oil and
soluble fractions move in general
direction of water current.

Volatile evaporation to
atmosphere

soluble
fraction
cloud ..

Atmosphere. ’

Sea surface oil slick

Droplet calving.

Solubilization.

water current flow direction
Marine water column. . &
L ] \ Sinking
droplets.

THE EVAPORATION-SINKING PROCESS BENEATH A SEA
SURFACE OIL SLICK.
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Relevant Research Issues

Deep Oil Spill modeling activity
supported by MMS and Offshore
Operators Committee, December
2004 report.

Buoyancy driven separation of
oil/gas plumes.

Droplets 1 mm to size of discharge
opening stratified by ambient
conditions and current under the
sea surface.

Natural hydrates are
thermodynamically stable and can
influence bubble dissolution and
rise.

CDOG and DeepBlow models.

': : ]
' K'-I‘?:::S;;( ::‘W? A\Y/A\V/,{W/A\vx

Single-phase plume Two-phase plume

] Uniform
crossflow
hs

AN ANY FANY FANY ST
Single-phase plume Two-phase plume

aration of plume phases due to ambient stratification (top) and cur
tom).
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Advanced Multiphase Flow Models

Large Scale Convection current Evaporation/Sinking Simulated by
(right to left) FLUENT

{mixture} (Time=21750e-01)
AMSYS FLUENT 12 .1 (2d, dp, pbns, vof, spe, la

Simulations courtesy of Prof. K Nandakumar’s group at LSU
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Unique Research Issues

How does oil/gas/dispersant mixture behave at high Pressure
and low Temperature?

What are the fates of oil and dispersant?
Hydrate behavior in the presence of dispersant?

Need for good mass balance models incorporating reaction and
transport in water column, bed-sediment and air for risk
assessment and management.

Experimental work on oil droplet movement in the water column
needed. Evaporation/sinking and solubilization/sinking
processes?

Dispersant design for environmental compatibility (green
surfactants, denser than seawater dispersants?).
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Unique Research Issues

» T and p gradients, variability of transport
coefficients and buoyancies of droplets as
they age and the plumes move.

» Friction, adhesion, coalescence of coated oll
droplets with sedimentary materials?

» Higher T and shallow water environment
influence on oil/dispersant mixtures?
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