Rivada Networks

Understanding Relevant Technologies

Clint Smith P.E. May 11, 2007

Topics

- Public Safety LMR
- Satellite
- Broadband (WiMax/WiFi)
- Mobile Broadband (WCDMA/CDMA)

Wireless Access Direction

- Broadband to Edge
- RAN Agnostic
- IP Based
- Flat Architecture
- Core Based on IMS
- Harmonized ASN/CSN
- WiMax, WiFi, HDPA, EVDO
- SDR
- Interoperability via IP

LMR Radio System Types

- LMR Radio System Types
 - Conventional
 - Trunked
 - Hybrid (control station repeaters)
- All of the systems employed by public safety are for mobile communications
- Utilize a mosaic of frequencies
- All LMR Radio Systems are Narrowband
- No Interoperability Standard (P25, Opensky)

Interoperability Bridges

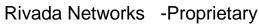
SR- 3001 Radio Interoperability System

Infinimux G4

INTEROP9

TRP1000 Transportable Radio Interconnect

Motobridge Soft Switched Radio Network May 11, 2007

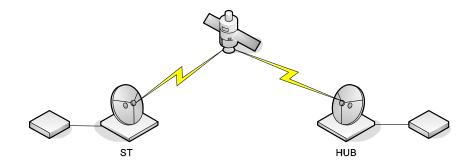

NFI Gateway

Cisco IP Interoperability and Collaboration System "IPICS"

ACU1000

LMR Direction

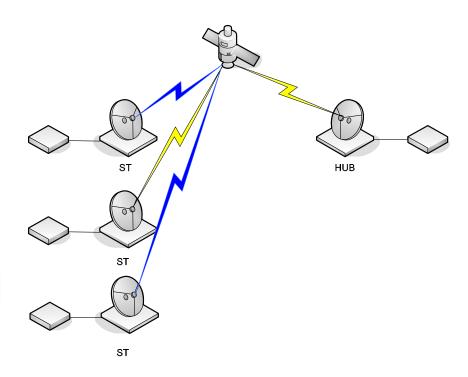
- Continued Proprietary System Approach
- Voice Communications
- Limited Data
- Convergence on 700/800 MHz
- 4.9GHz
- Nationwide Build-out required
- Multiple Devices still needed for interoperability



Satellite Communication

- Broad coverage area
- Independent of Terrestrial Facilities *
- Various Satellite Architectures
 - Bent Pipe
 - Partial Processing
 - Full Processing (RSA)
- Satellite Classifications
 - Low Earth Orbit (LEO)
 - Medium Earth Orbit (MEO)
 - Geosynchronous Orbit (GEO)
- Mobile (MSS) and Fixed (FSS) platforms

Bent Pipe



- Point to Point Connection
- Simple Structure
- RF Pipe
- No Processing at Satellite

Regenerative Satellite Architecture (RSA)

- Direct ST to ST
- On Board Switching
- Multiple Gateway
- DVB-S Downlink
- DVB-RCS Uplink
- Facilitates Broadband
 IP Network in Sky

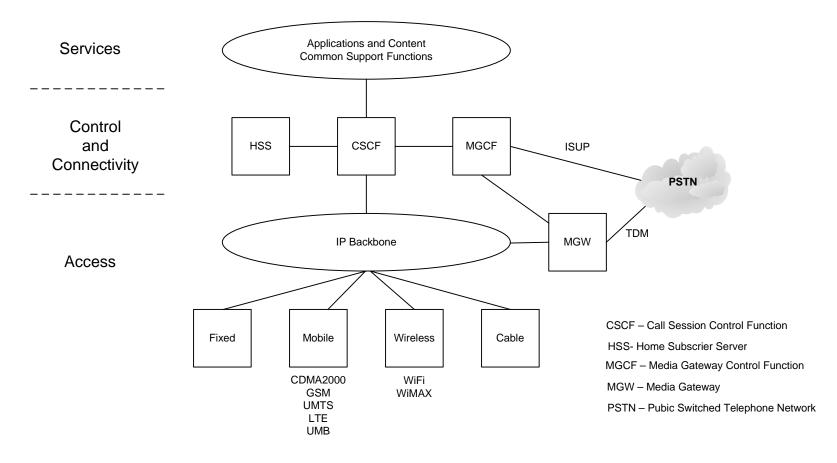
Satellite Direction

- Satellites will be a broadband conduit *
- IP
- Wideband payloads
- Mesh Network
- Multibeam, regenerative satellite

^{*} Transponder limited

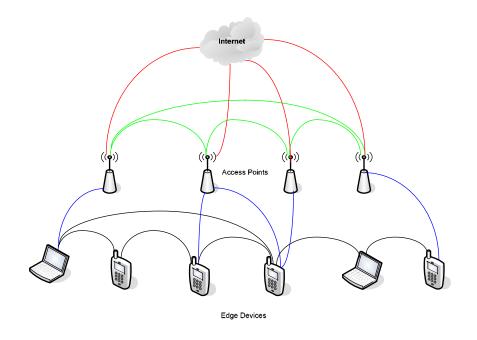
Connectivity Services Network (CSN)

- IP Based
- Broadband to Edge
- Core Based on IMS
- Flat Architecture
- ASN (RAN) Agnostic



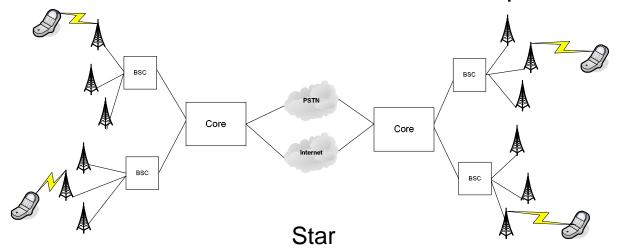
IMS (IP Multimedia Subsystem)

- What is IMS?
 - IMS is the standard framework for implementing multi-media services over IP
 - Defined by 3GPP/3GPP2
 - Access Agnostic
 - SIP Based
 - Backward compatible with traditional TDM networks through a Gateway
- Therefore IMS enables the convergence of data, voice and various network topologies using a IP based infrastructure


IMS Architecture

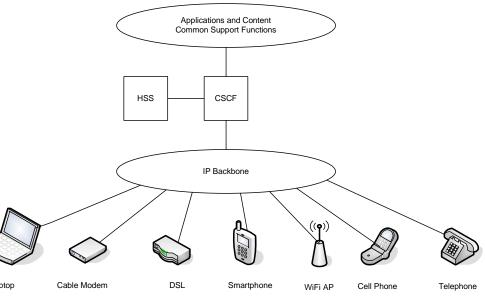
Wireless Mesh Network

- A wireless mesh network is an array of wireless devices that can communicate to each other via multiple paths
- Components of the wireless mesh network may or may not be the same ASN or frequency. (ie Cellular and WiFi)
- Utilizes IP (mobile/simple)
- Resiliency with added overhead



Mesh

Wireless Star Network


- Traditional Configuration
- Concentration which all nodes or devices directly connected to a common element
- A link failure to a node will isolate that node from the rest of the network computer. All other nodes will continue to operate as normal.
- Failure at central, common, node will disrupt network

Flat Network

- A Flat network utilize IP to achieve connectivity
- Provisioning and Management of end devices enhanced
- Components of the flat network may or may not be the same ASN. (ie CDMA and WiMAX)
- Utilizes IP (mobile/simple)
- Large LAN
- Resiliency

Flat

ASN

- WiMAX (802.16, 802.16e)
- WiFi (802.11a,b,g,n)
- UMTS (WCDMA/HSDPA/HSUPA)
- CDMA (1xRTT/EVDO)
- UMA/FMC
- UMB
- LTE

WiMAX

- Broadband to the Edge (last mile)
- Standard 802.16e
- Utilizes licensed and unlicensed spectrum
 - MMDS in US
- Designed for a large coverage area.
- TDD Access Method
- OFDM orthogonal frequency division multiplexing
- MIMO
- NLOS
- DL 70Mbs, UL 70Mbs
- Mobile IP

WiMAX

- Advantages
 - Broadband to Edge (last mile)
 - Mobile
 - Standard approved and recognized
 - Complimentary to existing ASN's
- Disadvantages
 - Needs to be built

WiFi

- WiFi is a wireless LAN based on the 802.11 standards
- Wi-Fi uses unlicensed spectrum.
 - 802.11 b/g (ISM)
 - 802.11 a (UNII)
 - 802.11 n (ISM/UNII)
- Designed for smaller coverage areas..
- WiFi is now a standard feature for laptops, computers, and PDA's.
- The convergence of 802.11 with wireless mobility has been described as the real killer application.

WiFi

- Advantages
 - Wireless LAN
 - Established Standard
 - Universally Accepted (Laptops, PDA)
- Disadvantages
 - Limited Coverage from Access Point
 - Security
 - Unlicensed Frequency

UMTS

- UMTS aka W-CDMA
- IMT2000
- Deployed world wide
- Utilizes GSM Core network (r99)
- Different ASN (RAN) than GSM
- Requires 10MHz (5MHz Tx/5MHz Rx)
- HSDPA (DL-14.4Mbps)
- HSUPA (UP -5.8Mbps)
- Circuit and IP Core

UMTS (HSPA)

- Advantages
 - Established Standard
 - Universally Accepted
- Disadvantages
 - Overlay Network
 - RAN upgrade for HSPA
 - Multiple Core Network upgrades
 - Not Backward Compatible to GSM

EVDO- Rev A

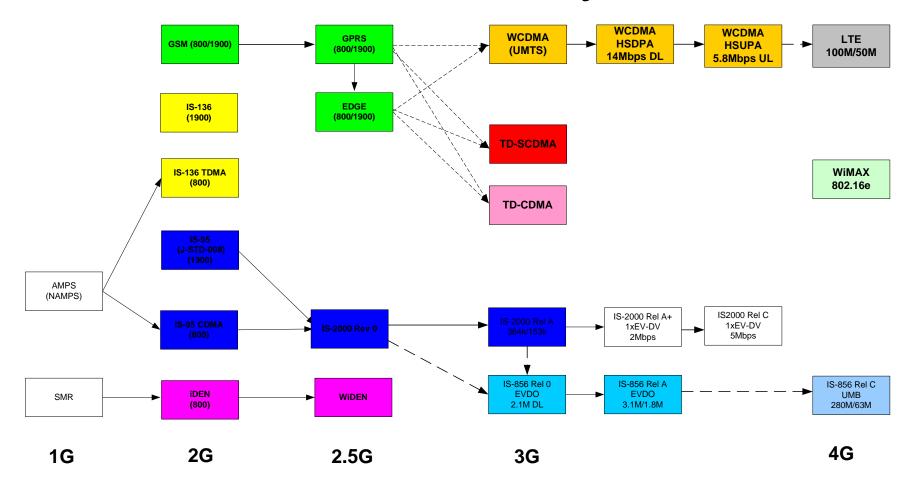
- Enhancement to EVDO –Rev 0
- IMT2000
- Deployed world wide
- Utilizes CDMA2000 Core network
- Different ASN (RAN) than CDMA2000 (1xRTT)
- Requires 2.5MHz (1.25MHz Tx/1.25MHz Rx)
- Rev 0 DL 2.1Mbps/UL 153kbps
- Rev A DL 3.1Mbps/UL 1.8Mbps
- Packet Based (IP)

EVDO – Rev A

- Advantages
 - Established Standard
 - Spectral Efficient
 - Backward compatible to EVDO –Rev 0 and 1xRTT
- Disadvantages
 - RAN and PDSN upgrade for Rev A
 - Overlay Network for 1xRTT

Ultra Mobile Broadband (UMB)

- OFDM /EVDO Rev C
- CDMA Technology Path
- Different RAN than EVDO Rev A
- Packet (IP)
- UMB peak data rates
 - DL 280Mbps
 - UL to 68Mbps
- Standard Still in Development



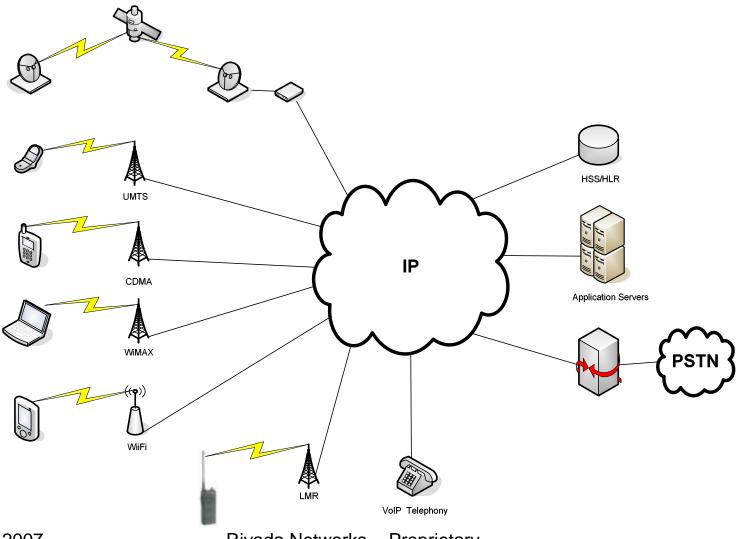
Long Term Evolution (LTE)

- High Speed OFDM Packet Access (HSOPA)
- Super 3G and 3.99G
- GSM/UMTS Technology Path
- New air interface system and incompatible with legacy WCDMA
- 1.25MHz to 20MHz Flexilble bandwidths(1.25Mhz increment)
 - 100Mbps DL -20MHz
 - 50 Mbps UL 20MHz
- FDD and TDD
- Packet (IP)
- Standards still in development

Wireless Mobility Paths

Software Definable Radio (SDR)

- SDR technologies utilize software to define ASN Modulation
- SDR's are being commercially deployed (FCC)
- Allows one ASN platform to utilize multiple technologies
- Modulation format can be altered quickly provided its in the waveform library
- Future proofing part of ASN
- SDR requires a PA and filters that are band specific
- Harmonization of the ASN Mosaic is possible with SDR



Fixed Mobile Convergence (FMC)

- Broadband to the Edge or anywhere
- Triple or Quad Play
 - Fixed Telephony
 - IP Telephony
 - Internet Access
 - Video
- Uses licensed and unlicensed spectrum
- Unlicensed spectrum technologies ie WiFi and Bluetooth
- Consistent user experience for their mobile voice and data services when transitioning between networks.
- Roam and handover seamlessly between private unlicensed wireless networks like GSM and LANs using a dual-mode Mobile phone.
- Enables mobile operators to deliver voice, data and IMS/SIP applications to mobile phones on any access networks.
- Femto cell

FMC

May 11, 2007

Rivada Networks - Proprietary

Summary

- Broadband
- RAN Agnostic
- IP Based
- Flat Architecture
- Core Based on IMS
- Harmonized ASN/CSN
- WiMAX, WiFi, EVDO, HSPA
- SDR
- Complimentary ASN's meeting user requirements
 - Government (DoD*, Federal, State, Local)
 - Private (Business, Consumer)
- Commercial Wireless can deliver Interoperable IP Broadband Today

